By incorporating nanoparticles into these composite materials, the structure of the car will have further enhanced strength, lightness and safety features, Mr. Rinland envisions.
Cameras positioned around the car and small screens inside the driver's canopy will provide 360-degree peripheral vision, rather than vision through traditional car mirrors, enhancing safety alongside reducing drag.
Intelligent tires —
Using technology that Dunlop is developing, tires will have internal sensors to send information to the control systems, which would then be able to adapt the suspension, power delivery and braking systems to utilize the tires to maximum advantage.
By embedding intelligent materials such as the ones used in the bodywork, the tires will be able to control their temperature and pressure, as well as change shape. This will allow reduced rolling resistance and induced drag in the straights (such as taking the shape of a motorbike tire), and increased contact patch area during the braking and cornering events.
Also, by having tires that adapt themselves to the circumstances and the environment, it will not be necessary to change them for weather conditions nor for wear — they will last for the whole race.
Energy recovery systems —
The car would do away with energy-wasteful brakes, replacing them with systems to harvest braking energy and store it in flywheels and/or super-capacitors to be used for power peaks events during the races.
Electronics and control systems will be advanced to such an extent that the driver will evolve to be more of a “vehicle operator.”